News & Analysis
/
Article

Bones of glass: A strong solution

DEC 08, 2023
Glass is known for its brittle nature, but its other strengths make it the perfect platform for bone regeneration.
Bones of glass: A strong solution internal name

Bones of glass: A strong solution lead image

Bone grafts help repair bones fractured by injury or weakened by disease, but can face a range of challenges. Donor grafts can be rejected by the patient’s immune system or even transfer disease, while grafts from the patient themselves risk donor site morbidity and additional surgical demands for those already under stress.

Bioengineered materials have the potential to solve these problems, but they must be biocompatible, mimic bone’s natural structure, and match the required mechanical properties of the site. Murugan et al. met these demands with their biomaterial made from Mesoporous Bioactive Glass and molybdenum disulfide, which encourages bone repair, acts as a scaffold, and minimizes infection risk.

“The developed material is biocompatible and able to form the bone mineral of hydroxyapatite which allows it to integrate with host tissue without triggering immune reactions,” said author Jayachandran Venkatesan. “Its porosity and structure facilitate cell adhesion, migration, and nutrient diffusion, promoting bone-forming cells’ growth. Its mechanical properties are tailored to match specific bone site demands, providing support and stability.”

As the material degrades, it releases simvastatin, a drug that promotes bone regeneration and reduces the risk of infection.

The team’s in vitro and in vivo studies demonstrated the potential of this material as a graft, with good biocompatibility, cell differentiation, and bone formation. Its customizable nature enables the possibility of more personalized medicine.

“The future research is expected to move toward tailored healthcare, in which biomaterials are modified to each patient according to their anatomical characteristics,” said Venkatesan. “This would increase the success rate of biomaterials in clinical settings and push the field toward more patient-focused treatments.”

Source: “Fabrication and characterizations of simvastatin containing mesoporous bioactive glass and molybdenum disulfide scaffold for bone tissue engineering,” by Sesha Subramanian Murugan, Pandurang Appana Dalavi, Suprith Surya, Sukumaran Anil, Sebanti Gupta, Rohan Shetty, and Jayachandran Venkatesan, APL Bioengineering (2023). The article can be accessed at https://doi.org/10.1063/5.0172002 .

This paper is part of the Structure and Mechanics of Biofluids, Biomaterials, and Biologics Collection, learn more here .

Related Topics
More Science
APS
/
Article
APS
/
Article
/
Article
Quantifying artistic properties with scaling analysis demands grid independence and careful analysis.
/
Article
Magnetic fields can be optimized to enhance the yield of extreme ultraviolet radiation from laser-driven plasmas.
/
Article
Ptychography can capture signals from light elements in a dose-effective manner in 3D, providing a more complete understanding of upconverting core-shell nanoparticles than conventional methods.
/
Article
Electrical stimulation can artificially recreate visual stimuli, but developing the signals requires a mechanism to monitor them.