News & Analysis
/
Article

Deep neural network finds lack of transferability when modeling supercooled water

FEB 24, 2023
Decomposition analyses of the molecular interactions show DNN potentials were unable to correctly represent fundamental individual many-body contributions.
Deep neural network finds lack of transferability when modeling supercooled water internal name

Deep neural network finds lack of transferability when modeling supercooled water lead image

Supercooled water continues to puzzle scientists as it freezes too quickly to be probed by experiments and moves too slowly to be modeled by high-level computer simulations. The emergence of machine learning has led to the development of deep neural network (DNN) potentials, which provide the energy of a molecular system given each atom’s coordinates and can reproduce molecular energies and forces obtained by high-level but short computer simulations with high fidelity at a fraction of the computational cost.

Building upon recent machine learning developments, Zhai et al. have trained a DNN potential on their highly accurate, data-driven MB-pol potential to investigate the behavior of water from the boiling point to supercooled temperatures.

“While our DNN potentials enabled fast computer simulations that reproduced, nearly perfectly, the MB-pol results for supercooled water, their performance on other properties, such as vapor-liquid equilibrium properties, was far from satisfactory,” said author Yaoguang Zhai.

To understand the lack of transferability of their DNN potentials, the authors performed thorough decomposition analyses of the molecular interactions, which demonstrated that the DNN potentials were unable to correctly represent individual many-body contributions.

When the authors improved the description of these individual many-body contributions, they found the performance of the DNN potentials on bulk properties had deteriorated, resulting in a “short blanket” dilemma as explained by author Alessandro Caruso.

“The lack of obvious transferability suggests that some caution should be used when exploring unknown thermodynamic states of a molecular system using DNN potentials,” said author Sigbjørn Bore.

The authors hope their study will stoke further interest in new DNN architectures that can generalize across different phases and thermodynamic conditions.

Source: “A “short blanket” dilemma for a state-of-the-art neural network potential for water: Reproducing experimental properties or the physics of the underlying many-body interactions?,” by Yaoguang Zhai, Alessandro Caruso, Sigbjørn Løland Bore, Zhishang Luo, and Francesco Paesani, Journal of Chemical Physics (2023). The article can be accessed at https://doi.org/10.1063/5.0142843 .

Related Topics
More Science
/
Article
Zinc oxide, a semiconductor used in power electronics, indents less in light, but the depth depends on its surface orientation.
/
Article
Simple model reproduces rapid disappearance of hump in non-linear dielectric response of highly polar liquid.
/
Article
Exploring variations in both wing kinematics and wing geometries produces optimized values that closely match flight behavior of fruit flies.
/
Article
The film, which switches between solar absorptance and infrared emittance synergistically based on temperature, could serve as an alternative to traditional energy-consuming systems.