News & Analysis
/
Article

An applied electrostatic field changed grain boundary structures in a ceramic

JUL 23, 2018
By forming ceramic bicrystals, researchers eliminated other parameters to show how an applied electrostatic field changed grain boundary core structures in SrTiO3.
An applied electrostatic field changed grain boundary structures in a ceramic internal name

An applied electrostatic field changed grain boundary structures in a ceramic lead image

In techniques like spark plasma sintering (SPS) or field assisted sintering technology (FAST), manufacturers apply electrostatic fields to powder compacts to densify ceramic materials. This method has led to debates about whether the applied field affects the materials’ atomic grain boundary structures and macroscopic properties. In response, Hughes et al. systematically changed the atomic structure of grain boundaries in strontium titanate (SrTiO3) with applied electrostatic fields during processing.

In the experiment, they used diffusion bonding to form SrTiO3 bicrystals with a flat interface plane and well-controlled grain boundary misorientation. During diffusion bonding experiments, two single crystals, placed between two insulated electrodes, applied a homogeneous electric field while avoiding current flow. “We were able to fix the misorientation between the two crystals and have systematically studied the effects of the applied electric field,” said author Klaus van Benthem.

The electrostatic field effects in SPS or FAST could help manufacturers make ceramics more quickly and at lower temperatures. Moreover, using an electrostatic field in the absence of current would reduce overall power consumption and costs associated with manufacturing these materials. SrTiO3’s cubic perovskite structure serves as a model system for oxide ceramics used in superconductors, memory devices and photovoltaic cells.

Next, the team will examine the thermodynamic stability of these structures at high temperatures, and test how varying electric field strengths could cause additional changes in grain boundaries. Ultimately, van Benthem identified their driving question as whether they can make a ceramic and change the grain boundary structure in operando.

Source: “Electrostatic fields control grain boundary structure in SrTiO3,” by L. A. Hughes, M. Marple, and K. van Benthem, Applied Physics Letters (2018). The article can be accessed at https://doi.org/10.1063/1.5039646 .

Related Topics
More Science
AAS
/
Article
AAS
/
Article
2024 YR4 is no longer a danger for Earth, and a (small) chance of a lunar impact could provide great science data.
AAS
/
Article
The Moon passes four bright planets this week, one by one. And as Venus wanes to a thinner but ever larger crescent, can you detect its tiny crescent shape in twilight with your unaided eyes?
/
Article
Ex vivo studies show efficacy of these remote-controlled robots to break up and treat blood clots
/
Article
A simple spacetime model containing a conical singularity provides an example of a universe that allows time travel.