A Better Prosthetic Foot for the Developing World

A Better Prosthetic Foot for the Developing World lead image
Courtesy of the researchers.
(Inside Science) -- Losing a leg can be profoundly debilitating. And it’s especially so for those in developing countries, where most of the world’s amputees live. Up to 95 percent of an estimated 30 million amputees in developing nations don’t have access to prosthetics
A new type of prosthetic foot, developed by researchers at the Massachusetts Institute of Technology in Cambridge, Massachusetts, may help alleviate some of the need. The new design, described in three
The need for affordable prostheses
Some of today’s state-of-the-art prosthetic technology -- robotic limbs, exoskeletons, and even mind-controlled arms -- seem to come straight from science fiction. Even standard prostheses in wealthy nations are complex, costing thousands to tens of thousands of dollars and requiring multiple fittings and tests, and fine-tuning with a specialist. Such expertise and infrastructure typically don’t exist in the developing world and the costs are far beyond the reach of most people, whose incomes can be less than $300 a year.
Organizations such as Bhagwan Mahaveer Viklang Sahayata Samiti, a group based in India that makes a prosthesis called the Jaipur Foot
In 2011, the makers of Jaipur Foot approached Amos Winter
Replicating a natural gait
The design is based on an approach that minimizes the discrepancy between an able-bodied walking gait and one with a prosthetic foot. Using a computer model and data of the forces on the joints in able-bodied limbs, Winter and his colleagues calculated the motion of a lower leg fitted with a prosthetic foot. They compared this predicted motion to an able-bodied person’s, and used a computer algorithm to adjust the prosthetic foot’s geometry and stiffness to match the able-bodied gait as much as possible.

Courtesy of the researchers
What’s powerful about this framework, Winter said, is the ability to predict the motion of the lower leg and to explain why one particular prosthesis is better -- allowing researchers to improve designs even more. Before, traditional prostheses were designed by trial and error, and there was no way to predict and quantify how the design of a foot can affect its performance.
Conventional approaches try to recreate the ankle, requiring complex and expensive devices. But the new approach allowed the researchers to treat the foot as a black box. All the foot has to do is to produce a motion at the knee that’s most similar to that of an able body. “If the knee does the right thing, then who cares about what happens downstream,” said Elliott Rouse
In the end, the engineers built a prosthetic foot from a single piece of nylon that flexes like a spring.
Winter’s approach focuses on the angular motions around joints. Although some other aspect of a gait could turn out to be more important, the new technique shows potential, Rouse said. “It’s a really promising approach,” he said. “It’s really exciting in that it can be designed and manufactured at costs and scales that are very different than today’s technology.”
Having tested the foot in India, the researchers are now partnering with the shoemaker Vibram to make a treaded, foot-shaped cover to encase the nylon prosthesis. They will soon begin testing the more lifelike foot in the coming months, Winter said, and hopefully bring it to market in the next year or two.