
Image credit – OSTP
Image credit – OSTP
The White House Office of Science and Technology Policy convened a roundtable
Six months after the act was signed into law, efforts to implement it are now well under way. The Department of Energy and the National Science Foundation are gearing up
Discussion at the roundtable covered such questions as how best to structure the research centers, train a quantum-literate workforce, and spur entrepreneurship in quantum technology development. A main thread of the discussion was how to develop a truly national approach to advancing the field that engages a wide spectrum of institutions and ensures individual efforts do not work at cross-purposes.
Under the NQI Act, DOE and NSF are each required to establish between two and five research centers. On May 20, DOE issued a request for input
The document indicates the department plans to fund “two or more” centers from among the proposals it receives, though DOE Under Secretary for Science Paul Dabbar told the roundtable it delineates the five types of centers the department anticipates creating. They span quantum communication, quantum chemistry and materials, qubit devices and sensors, quantum emulation and computing, and quantum foundries.
Dabbar also highlighted efforts underway
NSF Director France Córdova noted her agency plans to award QIS center grants through its new Quantum Leap Challenge Institutes
Voicing their perspective, university leaders attested to the challenges of operating quantum research laboratories, which they said are particularly expensive to maintain. Kathryn Moller, Stanford University’s vice provost for research, suggested a national inventory of relevant research infrastructure could help avoid duplication of effort.
Peter Schiffer, vice provost for research at Yale University, said co-location of research infrastructure is “extraordinarily important” based on his experiences with the Yale Quantum Institute
Terri Fiez, vice chancellor for research at the University of Colorado Boulder, said it is critical that quantum research hubs are connected so that they complement one another rather than compete. She said her university is forming partnerships with institutions in all the surrounding states to enable their students and faculty to take advantage of Colorado’s extensive laboratory infrastructure.
Another topic of discussion was the respective role of universities, national laboratories, major companies, and entrepreneurial ventures in training a workforce that is conversant in QIS. Córdova and NIST Director Walter Copan asked for input on ideal ways to introduce students to the subject and promote entrepreneurship, respectively.
Maria Zuber, vice president for research at MIT, suggested the best time to draw students into the field is after their third semester of college physics, when they are positioned to better grasp the underlying concepts. She noted MIT’s new Center for Quantum Engineering
Participants also discussed how the national push to advance QIS could inspire students to pursue careers in science as the space race of the 1960s did.
“Quantum could be that fascinating, strange, weird, quirky thing that draws interest even though you don’t understand quantum physics per se,” OSTP Kelvin Droegemeier posited. “We might want to think about how at the primary school level we could use quantum as a hook to draw people in with some stuff that’s really bizarre. I mean, kids like bizarre.”
Willie May, vice president for research and economic development at Morgan State University, pointed out that, although only a small fraction of the population will ultimately ever engage in quantum research, they will be users of QIS-enabled technology. Given that, he said serious thought ought to be put into providing appropriate training for end users.
Other participants commented on the surge of quantum technology startups and their role in drawing people into the field. However, caution was also aired against expectations of rapid progress in QIS.
“Generally speaking, it’s slow, hard, expensive going,” said Charles Tahan, technical director of the Laboratory for Physical Sciences, a National Security Agency research center located near the University of Maryland. He added that people entering the field should understand they could ultimately have a bigger impact working in a national lab or a large company instead of a startup.
Droegemeier told FYI after the roundtable that the discussion about the importance of partnerships in the context of infrastructure stood out to him.
“When we think about building research facilities and major pieces of equipment, things like that, we need to be thinking about [how] we’re not competing so much against one another, we’re competing as a nation against others,” he said. “The key thing is that we can’t all have everything that’s needed. Some institutions are better resourced than others.”
Jacob Taylor, acting director of the National Quantum Coordination Office, said he felt the discussion was consistent with the Trump administration’s view that there is still much fundamental science to be done, pointing to the “science first” approach advanced in its QIS strategy document
Asked whether increasing geopolitical competition could limit the U.S.’ ability to draw on foreign talent, Taylor noted the strategy document identifies a need to continue expanding international collaborations. He also commented on the potential
“Many, many areas of emerging technology [work] through the process of balancing economic needs and growth opportunities with national security considerations,” he said. “I appreciate that it may seem like there’s some sea of change coming, but maybe I don’t see it that way,” he added, citing the long history of controls being placed on certain quantum technologies.